Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols

نویسندگان

  • Anna M. Backes
  • Armin Aulinger
  • Johannes Bieser
  • Volker Matthias
  • Markus Quante
چکیده

In central Europe, ammonium sulphate and ammonium nitrate make up a large fraction of fine particles which pose a threat to human health. Most studies on air pollution through particulate matter investigate the influence of emission reductions of sulphurand nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. Emission scenarios have been created on the basis of the improved ammonia emission parameterization implemented in the SMOKE for Europe and CMAQ model systems described in part I of this study. This includes emissions based on future European legislation (the National Emission Ceilings) as well as a dynamic evaluation of the influence of different agricultural sectors (e.g. animal husbandry) on particle formation. The study compares the concentrations of NH3, NH4 , NO3 -, sulphur compounds and the total concentration of particles in winter and summer for a political-, technicaland behavioural scenario. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of the total PM2.5 concentrations in northwest Europe. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year. This leads to the conclusion that a reduction of the ammonia emissions from the agricultural sector related to animal husbandry could be more efficient than the reduction from other sectors due to its larger share in winter

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The need for ammonia abatement with respect to secondary PM reductions in Europe.

In Europe, secondary particulate matter (PM) comprises 50% or more of PM 2.5. To reduce PM concentrations requires lowering precursor emissions. Since the 1980s, SO(2) emissions have decreased by more than 60%, while particle concentrations have decreased less. NO(x) and NH(3) emissions have decreased slightly. The role of ammonia in particle formation is addressed here. It is shown that second...

متن کامل

Cost-effective N2O, CH4 and NH3 abatement in European agriculture: interrelations between global warming and acidification policies

In Europe agriculture is an important contributor to emissions of the acidifying compound ammonia (NH3) and the greenhouse gases nitrous oxide (N2O) and methane (CH4). Measures to reduce one of these gases may also have an impact on emissions of the others. This study investigates the effects of control options for NH3, N2O, and CH4 that are available for the European agriculture on the emissio...

متن کامل

Simulation of nitrate, sulfate, and ammonium aerosols over the United States

Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium) are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. Predicted aerosol concentrations are compared with surface-level measurement data from the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Clean Air Status and Trends Network (CASTNET), and ...

متن کامل

Gas-to-Particle Conversion Process between Ammonia, Acid Gases, and Fine Particles in the Atmosphere

Ammonia emissions are associated with many agricultural operations including animal and poultry operations, waste and wastewater treatment operations, and fertilizer and manure land applications. The fate of ammonia released to atmosphere is affected by interaction with other gases, aerosols, and fine particles. These interactions affect the gas-to-particle conversion. This process alters ammon...

متن کامل

Secondary inorganic aerosol simulations for Europe with special attention to nitrate

Nitrate is an important component of (secondary inorganic) fine aerosols in Europe. We present a model simulation for the year 1995 in which we account for the formation of secondary inorganic aerosols including ammonium sulphate and ammonium nitrate, a semi volatile component. For this purpose, the chemistry-transport model LOTOS was extended with a thermodynamic equilibrium module and additio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015